четверг, 31 марта 2011 г.

Впуск


Впускная система.



Впускной коллектор.

 Впускная система на обычных автомобилях состоит из воздушного фильтра, впускного коллектора и дроссельной заслонки. При открытии дроссельной заслонки воздух поступает в цилиндры двигателя, поочерёдно, в зависимости от того, какой цилинр работает на впуск. Впускные коллекторы такого типа используются на большинстве серийных инжекторных автомобилях. В зависимости от длинны впускных труб коллектора двигатель "настроен" на определённый режим работы оборотов мотора. При использовании длинных впускных труб улучшается работа на низких и средних оборотах мотора, при использовании короткого впуска повышается потенциал на высоких оборотах.

 Конструкция обычного впускного коллектора имеет свои недостатки - в ближний цилинр к дроссельной заслонке воздух поступает быстрее, и в больших количествах, а в остальные цилиндры по мере их удаления от дросселя.




 Так же на высоких оборотах возникают сильные колебания, воздух поступая от дросселя "мечется" между цилиндрами, вместо того, что бы двигаться целенаправленно. Такой впуск не подходит для нашего правильного мотора.

Впускной ресивер. 



 На более оборотистых моторах применяют ресивер типа "банка", с короткими патрубками и "дудками" внутри. На высоких оборотах он немного уменьшает колебания воздуха и увеличивает наполнение цилиндров, но всё равно имеет недостатки, как у впускного коллектора. Такой ресивер используется на двигателях с турбонаддувом и моторах использующих ДМРВ для подсчёта воздуха, где требуется объединить все впускные каналы в один.
Многодроссельный впуск. 

 Многодроссельный впуск - идеальный вариант для двигателя (на фото впуск формулы 1). Каждый цилиндр имеет независимую дроссельную заслонку, что позволяет избавиться от резонансных колебаний воздуха между цилиндрами, во время впуска. Двигатель работает стабильней во всём диапазоне оборотов, начиная с холостых и заканчивая максимальными.

 
На спортивные двигатели ВАЗ устанавливают четырёх дроссельный впуск или "дудки". Они хоть и обеспечивают раздельный впуск воздуха но всё же объединены общим каналом для тормозов, ДАДа (датчик абсолютного давления), РДТ (регулятор давления топлива) и РХХ (регулятор холостого хода).
 При установке многодроссельного впуска расчёт воздуха ведётся не по ДМРВ (датчик массового расхода воздуха), а по ДАДу и длительным испытаниям замера расхода воздуха двигателем на разных режимах, поэтому установка многодроссельного впуска не так проста, как кажется на первый взгляд.

 Для турбомотора такой впуск тоже подходит, например применяется на стандартных Nissan Skyline. Многодроссельный впуск накрывается банкой, с трубопроводом от турбины. Такая конструкция имеет приемущества перед рессивером, так как при открытии дросселей сжатый турбиной воздух одновременно и моментально попадает в цилиндры двигателя.

Сцепление спортивных автомобилей.


Ведомый диск, корзина сцепления и маховик.



 Сцепление автомобиля очень важный элемент на который приходится большая нагрузка. Выбор механизма сцепления зависит от мощности и крутящего момента двигателя. Самый распространённый вариант - недорогое однодисковое сцепление с простой конструкции с органическими накладками ведомого диска, оно применяется на 95% автомобилей с механической коробкой передач.

 Принцип работы заключается в следующем: ведомый диск зажимается двумя ведущими (роль которых выполняет маховик и корзина сцепления) и на него передаётся энергия от двигателя - колёсам. Органические материалы не любят высокой температуры, и расчитаны на эксплуатацию в спокойных условиях, без чрезмерных нагрузок. В случае резких стартов, езде по бездорожью, органический диск нагревается и начинает дымить.

 Каждый наверное сталкивался с такой ситуацией в какой нибудь колее на бездорожье, когда при попытке выехать из грязи появляется характерный запах "горелого сцепления". Его ресурс при этом очень резко сокращается, можно сказать несколько таких ситуаций, и диск сцепления начнёт пробуксовывать. Например при резком разгоне или подъёме в гору вы почувствуете, что двигатель набирает обороты, а машина не едет. Значит пора менять ведомый диск сцепления, процедура не из лёгких, связана со снятием коробки. Перегрев диска так же может вызвать отслоение фрикционных накладок, и будет не "буксовать", а "вести", то есть при полном выжиме передачи включаются с трудом.

 В автоспорте на сцепление приходится большая нагрузка, так как переключение передач осуществляется в диапазоне 6000-10000 об/мин на максимальной мощности двигателя. Стандартное сцепление не выдерживает таких нагрузок, и заменяется на более надёжную конструкцию.
 Самый простой способ - корзина с увеличенной прижимной силой на 30, 50 или даже 100%. Такое сцепление жёстко держит ведомый диск, но имеет свои недостатки. Возрастает усилие на педаль сцепления, что ухудшает скорость переключения передач. К тому же на переднеприводных ВАЗах выжим происходит с помощью тросика, который может порваться при чрезмерных нагрузках. В таких случаях устанавливают гидравлический привод выжима сцепления.

 Вместо органики в качестве фрикционного материала используют так же керамику, карбон и кевлар. Рассмотрим применение каждого материала подробнее.


 Керамика: не подвергается нагреву и выдерживает большие нагрузки. Но более "скользкая" по сравнению с другими видами фрикционных накладок. Требует высокой прижимной силы корзины. Резко переключается из "выключенного" состояния во "включенное".
 Карбон: обладает большим коэффициентом трения, чем керамика, поэтому переключение более плавное. Имеет лёгкий вес, больший ресурс и устойчив к перегреву.

 Кевлар: применяется в авиации и производстве бронежилетов. Износостойкость в 5-10 раз выше чем у органики. Хорошо переносит нагрев, но долго остывает, и способно нагреть ведомые диски. Имеет низкий коэффициент трения, как керамика.


 Ведомые диски сцепления могут быть с пружинным демпфером (центральная часть диска), так и без него. Пружинный демпфер применяется на всех стандартных автомобилях, смегчает ударные нагрузки, вызывает меньше шумов и вибраций но не предназначен для больших нагрузок.
 Беспружинные диски имеют лёгкий вес и обеспечивают четкое, быстрое переключение передач. Имеют меньший ресурс шлицов в связи с ударными нагрузками. Применяются только в автоспорте.



Маховик.



 На автомобилях которым требуется быстрый разгон, есть смысл применять облегчённый маховик, как и весь кривошипно-шатунный механизм. Уменьшение массы вращающихся частей двигателя на 10 кг при разгоне даёт такой же эффект, как уменьшение массы автомобиля на 100 кг. Легкие маховики не рекомендуются двигателям, которые работают на малых оборотах: дизеля, внедорожники. Высокооборотистые моторы, используемые для быстрого разгона должны быть максимально облегчены во вращающихся механизмах, но не в ущерб прочности. Маховик, коленвал и поршни с шатунами должны быть обязательноотбалансированны, во избежании разрушительных вибронагрузок.


Многодисковое сцепление.



Когда возможности однодискового сцепления исчерпали себя, на смену ему приходит многодисковое. Его коэфицент умножается на количество дисков, при этом не обязательно иметь корзину с большой прижимной силой. Ведомые диски используются как правило без пружин, для облегчения консрукции. Устройство по принципу работы такое же, как у обычного сцепления, но вместо одного ведомого диска используется два, или более.

 Количество ведущих дисков тоже увеличивается. Помимо маховика и нажимного диска в корзине, между ведомыми дисками находится ещё ведущий диск, который свободно перемещается вдоль оси вращения, но зацеплен за корзину, и вращается вместе с ней.
 Такие механизмы применяются на всех высокофорсированных гоночных автомобилях, к примеру на боллидах Формула 1 четырёх-дисковое сцепление. Существуют двух-дисковые комплекты для драговых автомобилей ВАЗ.

Закись азота




Вся правда об закиси азота в России
 За те несколько лет, что ходят разговоры об закиси азота и её пользе для ускорения автомобиля, остались вопросы, на которые нет ответа в интернете. Масса информации, переведённой с других языков, но малопонятной простому русскому гонщику. Хотелось бы поделиться своим многолетним опытом на эту тему.
Производители закиси азота.

 Итак: в России закись производится на территории завода "Череповецкий азот", в Украине заводами "Техногаз" и "Стиролбиофарм". Вся закисьмедицинская, технической у нас нет, её производят в Америке, и к перевозке обычными самолётами она запрещена.

 "А не повредит ли медицинская закись азота вместо технической мой мотор?"- спросит начинающий гонщик. А побробуйте с другом выпить по стакану спирта: один стакан медицинского, а второй технического.
Какой выберете вы?
Правильно, техническая закись азота тоже содержит добавки , что бы вместо мотора её не применяли орально, для взбадривания своего организма (наверное в Америке многие пытались это сделать). Медицинская закись азота никаких добавок не содержит, но нас интересует её применение исключительно в двигателе.


 Оправдана ли установка системы закиси азота на гоночный автомобиль, насколько она эффективна на 402 метра? Как вы думаете 50, 100, 200 лошадиных сил добавят вам преимущество в заезде?
"Да ладно, какие сотни лошадиных сил, подумаешь какие то 36% кислорода. Стоял у меня этот серый баллон с редуктором и резиновым шлангом, эффекта почти никакого, только понты одни, лучше распредвал побольше поставить."
Правильно. Просто поставить серый баллон на автомобиль, и вывести клапан подачи газа на тумблер в салон мало. Вас не прижмёт к спинке сиденья как в фильме "Форсаж" запуск такой системы.
"Так что же это всё обман, и закись азота это миф?"- спросит начинающий гонщик.
Закись азота это не миф, и драгрейсинг без неё не был бы полноценным. Особенно если автомобиль без турбонаддува, можно существенно увеличить его ускорение с помощью закиси азота. Просто система должна быть правильной.
 Какие же системы правильные, а какие нет? Попробуем разобраться.
Баллоны.

Сравним для начала американские баллоны родоначальников применения нитроса в гонках (nitrous oxide - закись азота по английски) и баллоны отечественного производства.
буржуйские

VS

наши родные
Да уж, визуальные отличия налицо. Американские конечно красивее и легче (из алюминия), но дорогие. Наши некрасивые ( красить нельзя, не поменяют), но на драге главное результат, а не внешность.
 Но самое главное отличие, что в американском баллоне есть трубка, от дна баллона до крана.
Правильно! Она нужна для того, что бы подавать сжиженную закись азота в систему. В нашем баллоне такой нет, потому что в медицинских целях нужна газообразная, но нужный эффект можно достичь перевернув баллон краном вниз.

Внимание! Установка баллонов с трубкой на автомобиль производится наклейкой кверху! В таком случае трубка в баллоне обращена ко дну, и подаёт сжиженный газ. При неправильной установке баллона будет подаваться газообразная закись, содержание в ней кислорода в 500 раз меньше, чем в сжиженной.
Жидкая закись.

краном внизТак почему же американцы используют жидкую закись азота для автомобилей, а газооббразную для наркоза человека. Потому, что еcли человека усыплять сжиженной, он скорее всего уже не проснётся.
А если в автомобиль подавать газообразную, эффект несомненно будет, так как содержание кислорода подаваемого в двигатель увеличится, но двигатель на высоких оборотах потребляет столько много воздуха из атмосферы, что эта прибавка станет для него незаметна.



редуктор не нуженТак делать неправильно.
Установка отечественного баллона краном вверх с редуктором подходит только в медицинских целях. На автомобиле такая прибавка даёт небольшой эффект на низких оборотах, а на высоких практически сходит к нулю. В драгрейсинге используються моторы с высокими оборотами, и прибавка крутящего момента на низких оборотах неэффективна.



 Так почему же нам так важна жидкая закись азота для ускорения двигателя?
Обычная физика: сравните- сколько молекул в газообразном веществе, и в этом же веществе жидком. Ну например вода в виде пара- сколько нужно пара, что бы получился киллограмм?
Попробуйте наполнить литровую банку килограммом пара. Наверное потребуется много усилий? А если наполнить литровую банку килограммом воды? Легко.
 Тоже самое можно сказать о двигателе и закиси азота. Нет смысла сначала испарять вещество, а потом пытаться с трудом запихнуть его побольше. Считается что если в воздухе 21% кислорода, а в закиси азота 36% - соответственно мощность мотора может увеличиться в 1,7 раза. Да, это при условии что в мотор перекроется подача атмосферного воздуха, и будет поступать газообразная закись азота в чистом виде. Представляете сколько атмосферного воздуха потребляет драговый мотор, на оборотах двигателя 10000? Допустим средний спортивный мотор за один 13 секундный заезд на драге "съедает" почти 2 кг воздуха, или 1500 литров. Соответственно что бы атмосферный воздух вытеснить из коллектора, нужно задувать в коллектор двигателя столько же газа через редуктор из баллона. Редуктор такое количество газа пропустит минуты за две.
 Представьте, что в жидкой закиси азота молекул кислорода в 500 раз больше, чем в газообразной, или в 750 раз больше, чем в окружающем воздухе! Остальное - азот, который помогает бороться с детонацией. Закись идеальное вещество для повышения мощности двигателя.

 Ещё хочется немного сказать о чистом кислороде из баллонов - он взрывоопасен при смешивании с маслом, и ещё температура горения бензина с кислородом расплавит мотор, так что он никак не может быть применён в машине, разве что в ракете. Для сравнения: в чистом кислороде содержится молекул в 5 раз больше, чем в воздухе, а в жидкой закиси в 750 раз!

Компоненты.

 Ну вот, с баллонами разобрались, что же дальше?
Закись азота поступает в спортивный двигатель в жидком виде, содержит столько молекул кислорода, что можно кратковременно прибавить мощность двигателя на 1000 Л/С и более, конечно если конструкция двигателя позволяет.
шланг и клапанЗакись азота выходит из баллона ,направляется по специальному шлангу, готовясь произвести нечто, но упирается... в электрический клапан (соленоид) который управляется тумблером из салона. Шланг лучше использовать диаметром 4-5мм, что бы закись быстро дошла до форсунок, он выполнен из специального материала расчитанного на высокое давление и низкую температуру, обычно это нейлон или специальная армированная резина. Можно использовать металлическую трубку соответствующего диаметра.
Далее по системе трубки должны быть тоньше шланга, чтобы исключить расширение и газификацию. Вообще вся система должна быть без полостей и расширений, что бы закись раньше времени не превратилась в газ, в жидком виде она должна дойти до распылителя.
 Что бы исключить перемерзание, поток газа должен всё время идти на сужение. То есть самым толстым отверстием должно быть проходное сечение вентиля, затем шланга, потом соленоида, далее трубки после соленоида и в итоге жиклёра, где и проходит процесс превращения жидкой фракции в газообразную. Если в системе есть расширения - значит возможны перемерзания потока закиси.



схемаЭлектроклапан (соленоид) должен быть большой мощности, что бы перекрывать закись азота под высоким давлением, не иметь прокладок, которые не выдерживают низких температур (ведь при расширении вещество создаёт минусовую температуру).
 Тумблером открываем клапан, закись азота через жиклёры поступает в двигатель... и бабах! Резкое обеднение рабочей смеси, детонация и поршни вываливаются в поддон. Что бы система закиси азота подействовала на мощность мотора, нужна строго пропорциональная прибавка топлива. Как это достигается?

Импортные системы имеют определение как "сухие" и "мокрые". Обе состоят из баллона, который подаёт закись азота в жидком виде на электроклапан, и далее через жиклёр в двигатель. В подаче закиси азота в мотор разницы нет. Различие заключается только в подаче дополнительного топлива.


Мокрая система.

  В "мокрой" системе дополнительное топливо снимается с топливной рейки инжекторов. Оно там всегда стабильно (регулируется клапаном давления топлива), и через подобранные жиклёры поступает во впускной коллектор двигателя, вместе с закисью азота. Электроклапаны подачи закиси азота и дополнительного топлива включаются одновременно. Электроклапан перекрывающий дополнительное топливо может быть обычным, с бензостойкими прокладками. Мокрая система закиси азота независима от подачи воздуха и топлива в двигатель, и прибавляет определённое количество лошадиных сил, исходя из подбора жиклёров для этой системы. При увеличении мощности двигателя обязательна замена топливного насоса на более производительный, во избежании обеднения рабочей смеси.

Сухая система.

  "Сухая" система подаёт жидкую закись азота через подобранные жиклёры. Дополнительное топливо подаётся разными способами: на инжекторных двигателях использовались такие методы, как увеличение давления топлива в топливной рейке при активизации системы( с помощью регулятора давления топлива), обман ЭБУ двигателя с помощью резистора, создающего иммитацию мороза на улице, тем самым увеличивая подачу топлива через форсунки. Все эти системы применяют полумеры для подачи дополнительного топлива, и являются неэффективными.
  Наиболее эффективная "сухая" система подачи закиси азота состоит из подачи жидкой закиси азота и двухпрограмной прошивки ЭБУ, ECU (электронный блок управлением работы двигателя). То есть двигатель в обычном режиме едет на прорамме расчитанной для атмосферного воздуха, а при включении тумблера закиси азота, меняет программу в ЭБУ, и топливо в двигатель подаётся в увеличенном объёме через топливные инжекторы в соответствии с расчётами на объём подаваемой закиси азота. Топливные инжекторы в этом случае должны быть обязательно увеличены в сумме на 500 мл/мин на весь двигатель на каждые 100 Л/С планируемой прибавки мощности. Ну например если на автомобиле ВАЗ 2112 стоят форсунки производительностью 132мл/мин то при установке такой "сухой" системы с прибавкой 100 Л/С должны быть установлены форсунки производительностью 250мл/мин + топливный насос повышенной производительности + двухпрограмная пошивка управляющая дополнительной подачей топлива.
  На самом деле правильная "сухая" система закиси азота не уступает по мощности "мокрой", но более сложна в настройке, так как требует программирование ЭБУ и установки увеличенных инжекторов (форсунок).

    Ну вот примерно разобрались с принципом работы "сухих" и "мокрых" систем. Хочется сказать, что прибавка мощности осуществляется на одинаковое количество лошадиных сил при любых оборотах двигателя и независимо от его объёма. Мощность системы закиси азота зависит только от размера подобранных жиклёров. Пару жиклёров можно ставить одну, на весь впускной коллектор двигателя, а можно на каждый цилиндр отдельно. Во втором случае возрастает эффективность.
 При установке системы свыше 100 л/с требуется установка кованных поршней, шатунов, укрепление блока двигателя. Не забывайте про топливный насос увеличенной производительности.
Установка закиси азота на ВАЗ.

мокрая системаПримерно так выглядит "мокрая" система на ВАЗ 2112 с распределённой подачей на каждый цилиндр. Обратите внимание- топливо подаётся на клапан шлангом с топливной рейки. Трубки с красными наконечниками- подача топлива на жиклёры, с голубыми- закиси азота. Армированный шланг идёт к баллону. Все компоненты системы закиси видны на фото, кроме баллона. 2 соленоида, 4 форсунки, 2 разветвителя ( один на подачу топлива к форсункам, другой на подачу закиси). 


Форсунки и жиклёры.

форсунка сухой системы
Так выглядит форсунка для подачи закиси азота в "сухой" системе. Она вкручивается в коллектор двигателя, сверху вставляется жиклёр и закручивается трубкой.

форсунка мокрой системыТак выглядит форсунка для "мокрой" системы. Цифрой 1 показано отверстие куда вставляется подобранный жиклёр для закиси азота, цифрой 2- для топлива. Оба жиклёра тоже закручиваются сверху трубками.

распылительПоказан наконечник распылительной форсунки, закись азота и топливо выводятся разными каналами, и смешиваются непосредственно во впускном коллекторе.

жиклёры Жиклёры для регулировки мощности системы.

жиклёры Так выглядит установка подобранных жиклёров в распылительную форсунку.


Грелка для баллона.

 Грелка для баллона применяется для поддержания одинаковой температуры газа, и соответственно для стабильной работы системы. При расчёте жиклёров подачи закиси, мы подразумемеваем, что температура баллона 20`C, и давление в баллоне 51 атмосфера. Подбираем жиклёры, испытываем машину - всё работает нормально. Приезжаем на гонки, а с утра что-то похолодало, и температура на улице +10. Давление в баллоне уже не 51 атмосфера, а 40. Смесь закиси с топливом уже поступает обогащённая, и желаемой мощности не получилось. А ещё хуже когда на улице жара, настраивали систему с расчётом на 20 градусов, а на улице +35. Тогда давление в баллоне подскочит до 72 атмосфер, и обеднённая смесь может вызвать детонацию, что самое страшное для мотора. Ниже представлена таблица зависимости давления закиси в баллоне от температуры окружающего воздуха.
Температура баллона --- Давление в баллоне
 (Celsius) ---------- (атм)
       -34 ---------- 11,5
    -29 ---------- 14
       -23 ---------- 16,5
       -18 ---------- 19,5
    -12 ---------- 23
      - 6 ---------- 26,7
        0 ---------- 31,7
     4 ---------- 36
       10 ---------- 40,7
       15 ---------- 46,5
       21 ---------- 52,4
       27 ---------- 59,7
       36 ---------- 73,7
 Так что грелка вполне полезный атрибут, например установив в ней постоянную температуру, например +30 градусов, и подобрав соответствующие жиклёры, можно не беспокоиться о перепадах температуры на улице. Ваша система закиси будет работать всегда стабильно.

Помните, что закись азота - газ с критической температурой 36,5 °С, его критическое давление — 72,6 бар.

Нежелательно привышать эти параметры, если у вас алюминиевый баллон - может взорваться, как впрочем и обычная зажигалка или дезодорант. Для избежания раздутия баллона служит аварийный клапан на 80 бар.

Закись азота на турбонаддувных двигателях.

 Возможно ли применение "мокрых" систем на двигателях с высокой степенью наддува турбиной? Не слишком ли большая мощность будет на высоких оборотах?
 На двигателях с высокой степенью турбонаддува, когда давление турбины используется на оборотах двигателя выше средних, система закиси очень полезна. Большая турбина раскручивается на высоких оборотах двигателя, а на низких оборотах не создаёт давление, и двигатель работает как атмосферный. Это называетсятурбопровал или турбояма. Система закиси как нельзя лучше подходит для того, что бы убрать турбояму и дать быстро раскрутиться двигателю, пока не начнётся турбоподхват.
датчик давленияНапример ставим на турбомотор систему закиси мощностью 100 л/с. Включаем тумблер активации (система пока не работает, потому что микровыключатель на дроссельной заслонке не включен), включаем передачу, трогаемся, нажимаем газ полностью, закись пошла в двигатель, резкая прибавка мощности, двигатель набирает обороты выше средних, в дело включается турбина...
И в этот момент система закиси азота должна отключиться, воизбежании детонации, предоставив дальнейшую прибавку мощности турбине. Отключению системы служит специальный датчик давления, например срабатывающий при достижении 1,5 атмосферы во впускном коллекторе двигателя.

Современные системы закиси азота.

схема закись+воздух Прогресс не стоит на месте, поэтому на смену системам где используются дозирующие жиклёры и грелка, приходят более совершенные и дающие стабильный результат.

Например система изображённая на рисунке выдаёт постоянное давление закиси из баллона, без грелки. Это достигается с помощью дополнительного баллона, в котором находится воздух, под большим давлением. Этот воздух подаётся на баллон закиси, с помощью редуктора, который поддерживает стабильное давление, например 70 атмосфер.

Воздух из редуктора поступает через специальное отверстие в баллон закиси, надавливая на сжиженный газ сверху, и тем самым обеспечивая одинаковое давление, независимо от температуры окружающего воздуха и применения грелки.


Такую систему использует комманда "Лукойл-Рейсинг" на своей дрэговой "десятке".

Существуют так же образцы систем закиси азота, в которых вообще отсутствуют жиклёры, описанные в предыдущих системах, а подачей закиси управляет ЭБУ. Но об этом позже...
Техника безопасности.

 Из техники безопасности хочется отметить следующее:
1) Если вы включили закись азота при неработающем двигателе, не заводите его после этого, будет взрыв в коллекторе. Отсоедените провода с модуля зажигания и покрутите мотор стартером что бы вышла рабочая смесь.
2) Не допускайте работу системы после "отсечки" инжекторного двигателя.

 Ну вот пока и всё. Нажимаем на тумблер... и приятного вам ускорения.



Коробка переключения передач.



 На стандартных автомобилях применяется синхронизированная КПП поискового типа. Выбор переключения передач осуществляется по Н-образной форме с выжимом сцепления. Синхронизаторы представляют из себя небольшие зубчатые кольца, которые несут на себе всю нагрузку от двигателя, и передают её колёсам.

 При использовании двигателя большой мощности стандартные синхронизаторы не выдерживают возросшей мощности, и передачи начинают "вылетать" или просто перестают включаться. В автоспорте на смену синхронизированным КПП приходят кулачковые.


Кулачковая коробка передач.

кулачковая кпп

 Отличие кулачковых коробках переключения передач от обычных заключается прежде всего в небольших количествах крупных зубъев (5-7) муфты включения передач и шестерней, вместо мелких зубчиков на синхронизированных КПП. Зубья имеют прямую форму, вместо косозубых, для того что бы снять осевые перемещения валов. Передачи переключаются чётко и безотказно, что очень важно в автогонках, особенно драг рейсинге. Механизм переключения передач бывает поисковый и секвентальный.
 Поисковый работает как на стандартных КПП, только более чётко, без выжима сцепления, достаточно лишь ослабить педаль газа, и можно переключать передачу. Сцепление нужно только при трогании с места на первой передаче.


секвентальный механизм кпп

 Cеквентальный механизм (на фото) позволяет переключать передачи на одну ступень вверх или вниз, как на мотоцикле. Рычаг переключения двигается только вперёд-назад, на дисплей выводится номер включённой передачи.
Вилками переключения передач управляет специальный вал, который имеет борозды волнообразной формы. С каждым толчком рычага он крутится на определённый градус, а форма борозд способствует продвижению вилки в нейтральное положение, или на включение какой либо передачи.
Для переключения передач в секвентальных КПП можно использовать пневмо, или электро-привод рычага, расположив кнопку привода для удобства - на руле, или использовать подрулевой переключатель.


 Почему такие КПП не применяются в обычных автомобилях?
 Резкость включения передач экономит время но создаёт большие ударные нагрузки на шестерни КПП, что приводит их к преждевременному износу. Для примера переключение передачи на обычном автомобиле происходит за 0,6 с. в то время как на кулачковых коробках переключение занимает 0,2 с. При переключении 5-ти передач выигрыш составляет 2 с. и даже более, так как обороты двигателя не успевают упасть, и находятся в зоне максимальной мощности. Две секунды это очень большой выигрыш на драг рейсинге, когда результат определяют сотые доли секунды.
Передаточные числа КПП.


 В тюнингованных автомобилях применяются различные передаточные числа (ряды) КПП. Основной недостаток стандартной коробки передач - слишком короткая первая передача. Она расчитана на сверхмедленную езду в пробках, буксованию в грязи но ни как не на динамичный разгон автомобиля на гоночном треке.

 Если попробовать быстро разгонятся на первой передаче до максимальных оборотов на стандарном автомобиле, скорость едва ли превысит 40 км/ч и затем с хрустом переключение на длинную вторую передачу, на которой разгон почти вдвое больше.
 Для более эффективного разгона применяют более сближенные передаточные числа КПП и более длинную первую передачу, на которой набирается скорость не намного меньше, чем на второй.